教材開発

モデルベース設計に基づく 速度制御系教材の開発

千葉職業能力開発短期大学校 岡田 侑大. 五十嵐 智彦

1. はじめに

近年の第4次産業革命進展に伴い,多くの設備が 急速にオートメーション化したことから,制御工学 が教育現場において重要度を増している。

その一方,一般的な制御工学の講義では,伝達関 数や状態方程式等の数学を用いた抽象的な議論に偏 りが生じやすい。初学者にとっては具体的な物理的 イメージが実装と結び付かないために,教育現場に おいて不人気科目として認知されることが多い。そ こで,制御工学理論と物理的イメージを結び付けら れる教材が提案されている。

例えば、北海道職業能力開発大学校の茂木は「実 機とシミュレーションを連携したフィードバック制 御に係る教材の作成及びその教育訓練に関する検 討」¹⁾において、シミュレーション技術に基づく PID制御の直感的イメージを持つことを可能にする 位置・角度制御系教材を提案している。

また,宇都宮大学の平田は,「ArduinoとMATLAB で制御系設計をはじめよう!」²⁾において,模型用DC モータの速度制御系および,極指定法を用いたPIゲ インの設計,さらにはBall and Beam実験装置を用 いた位置・角度制御を行っている。

上記を含む制御系教材の大半は、マイコン等を用 いてディジタル実装されており、演算時間に起因す る無駄時間が生じる場合がある。無駄時間は、伝達 関数では高次遅れ系と見なされるため、制御対象が 1次遅れ系にもかかわらずステップ応答が振動を起 こす等,制御理論とは異なる挙動を示す場合があ る。

そこで筆者らは,可能な限り理論に忠実な挙動を 示す初学者向けの制御系教材が必要と考え,アナロ グ回路による模型用DCモータの速度制御系設計に 基づく教材を開発した。本稿では,開発教材が制御 理論通りの現象を示すかを検証した。その結果,お おむね理論通りの結果を得られたので報告する。

2. 本教材の仕様

本教材は、制御対象を定格5Vの模型用DCモータ として、このモータに速度フィードバックをかける ことで、負荷トルクの変動に関係なく一定の速度で 回転させることを目的としている。速度検出は図1 に示すように、別途用意した同形式のDCモータの 軸同士を機械的に結合させ、回転数を電圧に変換す ることで速度を検出する仕組みを設けている。

図1 本教材の制御対象モータとタコメータ部分

本稿では、下記4項目の製作手順を設け、フィー ドバック制御による速度制御系を開発した。

- ① ブロック線図による制御系の構成
- ② アナログ電子回路による制御器の設計
- ③ 伝達関数のパラメータ同定
- ④ 極指定法によるPIゲインの設計

2.1 ブロック線図による制御系の構成

図2はDCモータのブロック線図を示す。また, 別添図1に本速度制御系教材のブロック線図を示 す。別添図1,2,3の点線で示す a 部分は,DCモー タ相互を示し,図2は該当部分の抜き出しである。

回転速指令値は,指令値電圧*V*^{*}[V]で与え,指令 値電圧がタコメータ出力電圧*V*_i[V]と一致するよう にフィードバック系を構成している。ここで,タコ メータは回転速度と出力電圧がおおむね比例関係に あると見なし,伝達関数を*K*_e2と置く。DCモータに はFETを用いたチョッパ回路より電圧を加える。 その際,チョッパ回路のチョッパ定数を*K*_eと置く。

図2 制御対象(模型用 DC モータ)のブロック線図

2.2 アナログ電子回路による制御器の設計

制御対象の模型用DCモータはモータ内部の粘性 摩擦D_m等が原因で回転しない非線形な系(偏差部) を持つ。一般に,制御系設計は制御対象が線形な系 である方が簡易に行える。本教材では制御系設計を 簡易に行うために,偏差部にoffset電圧を加える offset生成回路を設けた。別添図1をアナログ電子 回路にて実現するべく,DCモータをPWM制御する 主回路,PWM制御用三角波生成回路,フィード バック制御回路(PI制御),各制御回路の電圧を安 定化させるDC/DCコンバータを用いた電源ライン 製作回路,指令値波形となる矩形(くけい)波生成 回路およびoffset生成回路を設計した。

2.3 伝達関数のモータ内部パラメータ同定

制御系設計をモデルベースで設計するべく,別添 図1に示したブロック線図の各パラメータを同定す る必要がある。以下,各パラメータの同定方法をそ れぞれ紹介していく。

(a) モータチョッパ定数*K*_c

チョッパでの入力指令値と出力PWM電圧には, 比例関係があると考え,チョッパ定数を*K*_cと置い た。チョッパ出力電圧*V*_{out}は,出力電圧が矩形波で あるので,平均値を出力電圧値として扱った。

本回路は, DCモータが誘導性負荷であると見なせ る。負荷電流が小さく,かつスイッチング周波数が 低い場合には電流不連続モードが発生してしまう。 一般に,電流不連続モードでは出力電圧が理論値よ りも上昇することが知られている。系の線形性を確 保するべく,電流連続モードでの使用が望ましい。

図3,4はスイッチング周波数をそれぞれ1kHz と5kHzにしてDCモータを駆動させた際のFET D-S 間の電圧波形をそれぞれ示す。スイッチング周波数 が1kHzでは、電流不連続モードとなっているが、 5kHzでは電流連続モードが成されていることが確 認できる。よって、チョッパ定数*K*_cの同定実験は スイッチング周波数を5kHzで行う。

本実験条件を踏まえ、チョッパ定数K_cを同定する。チョッパの出力電圧V_{out}は以下の式で表される。

 $V_{out} = d \times V_{cc} = K_c \times V_{in} [V] \cdot \cdot \cdot \vec{\mathfrak{X}} (1)$

ここで, dデューティ比, V_{cc}電源電圧である。

別添図4のオープンループ・フィードバック切り 替えスイッチをオープンループ側にして、チョッパ 入力電圧 V_{in} を変化させたときのチョッパ出力電圧 V_{out} の関係から K_c を同定する。図5に V_{in} と V_{out} の関 係を示す。最小二乗法より、傾きが2.02と求まった ため、モータチョッパ定数 K_c =2.02と同定した。

(b) モータ内部抵抗R

模型用DCモータの内部等価回路と測定回路を図 6に示す。同回路では、誘導起電力が0Vとなるように指で軸を拘束すると、模型用DCモータにかか る電圧と電流の関係より内部抵抗が同定できる。図 7にDCモータの電流と電圧の関係を示す。最小二 乗法を用いて傾きを1.38と求めた。よって、模型用 DC モータ内部抵抗R =1.38 Ωと同定した。

(c) モータ内部リアクタンス*L*_a

模型用DCモータの内部リアクタンス測定回路を 図8に示す。同図の通り、模型用DCモータにLCR メータを接続することで、内部リアクタンスLaを測 定する。測定結果より、La = 310 µ Hと同定した。

(d) モータトルク定数*K*tと逆起電力定数*K*e

模型用DCモータに負荷トルクT_Lをかけ、そのと きの回転速度Nとタコメータ出力電圧Vtからモー タトルク定数K_tと逆起電力定数K_eをそれぞれ同定す る。負荷トルクT_Lは、図9に示すプーリにエナメル

図6 モータ内部抵抗 R 同定実験回路図

図8 モータ内部リアクタンス La 同定実験回路図

図9 モータ回転数測定用白黒円盤

線をかけ、その両端にばねばかりを設けることで与 えることにした。一方のばねばかりを固定し、もう 一方のばねばかりの先に、手により引っ張り力を加 える。両端のばねばかりの読みをそれぞれ*W*_a[kg] と*W*_b[kg]とし、実験回路図を図10に示す。この読 みの差を次式に用いて負荷トルク*T*_Lを算出する。

 $T_L = (W_a - W_b) \times L \cdot \cdot \cdot \vec{\mathfrak{T}} (2)$

上式におけるLは,図9に示すプーリの直径とエ ナメル線の直径の合計値とする。回転数は,同じく 図9に示す白黒円盤をプーリの側面に取り付け,回 転数測定器を用いて測定する。

負荷トルクを変化させた際のモータ電流*I_m*, タ コメータ出力電圧*V_t*,回転速度*N*をそれぞれ測定 する。各値を用いてモータトルク定数*K_t*と逆起電力 定数*K_e*それぞれを同定する。

(d) -1 モータトルク定数*K*t

モータ電流*I*_mとモータトルク*T*_mの間には,次式の 関係性が成り立つことが知られている。

 $T_m = K_t \times I_m \cdot \cdot \cdot \vec{\mathfrak{X}} \quad (3)$

式(3)より,モータトルク定数Ktを同定する。

モータ電流とモータトルクの関係を図11に示す。 最小二乗法より傾きを0.0039と求めた。モータトル ク定数 K_t =3.90×10³ Nm/Aと同定した。

(d) -2 逆起電力定数Ke

逆起電力 V_e [V]と角速度 Ω [rad/s]の間には,次式の関係性が成り立つことが知られている。

 $V_e = K_e \times \Omega[\text{Vs/rad}] \cdot \cdot \cdot \vec{\mathfrak{X}}$ (4)

ただし、角速度 Ω [rad/s]と回転数N[rpm]の関係 は以下の通りである。

$$\Omega = \frac{2\pi N}{60} \left[\text{rad/s} \right] \quad . \quad . \quad \not r (5)$$

式(4)より、逆起電力V_eと角速度Ωの関係が分

かれば逆起電力定数*K*_eを同定できるが,逆起電力 を直接測定するのは困難である。しかし,無負荷時 の電流が十分に小さいと仮定すると,逆起電力は電 源電圧に等しいと考えることができる。

モータトルクとモータ回転数の関係を図12に示 す。最小二乗法より無負荷時の回転数を推定し,逆 起電力が電源電圧とほぼ等しいと見なすことで逆起 電力定数*K*_eを同定する。

最小二乗法により1次方程式として近似すると, その切片は6649と求まる。よって,無負荷時の回転 数は6649rpmと推定できる。ここで,図10を用いた 実験時の電源電圧は1.61Vである。

式 (4), (5) それぞれに各値を代入した結果, 逆 起電力定数 *K_e* = 2.31×10³ Vs/rad と同定した。

(e) 粘性摩擦係数 Dm

本教材の回転系における運動方程式は,次式のよ うに成り立つ。

$$T = J_m \frac{d\Omega}{dt} + D_m \Omega \quad \cdot \quad \cdot \quad \vec{\mathbf{x}} \quad (6)$$

ただし、 J_m はモータの慣性モーメントである。式 (6) に式 (3) を代入すると、次式のようになる。

$$K_t I_m = J_m \frac{d\Omega}{dt} + D_m \Omega \quad \cdot \quad \cdot \quad \vec{\mathcal{K}} \quad (7)$$

さらに、定常状態においては、

 $\frac{d\omega}{dt} = 0 \quad \cdot \quad \cdot \quad : \vec{\mathbf{x}} \quad (8)$

と置くことができるので,式(7)に代入して,

$$K_t I_m = D_m \Omega \quad \cdot \quad \cdot \quad \exists \quad (9)$$

となる。よって、粘性摩擦係数 Dmは、下記の式より求めることができる。

今回は、モータ印加電圧は1.61 V一定とする。負荷を加える際、片方のばねばかり W_a [kg]の値が 15.0gになるまで2.5gずつ加えていき、各粘性摩擦 係数の平均値を算出した。その結果、 1.39×10^5 と算 出したので、粘性摩擦係数 $D_m = 1.39 \times 10^5$ Nms/ radと同定した。

(f) タコメータ伝達関数 K_{e2}

タコメータの出力電流は非常に小さいと仮定し て、出力電圧は回転数に比例すると見なすことがで きる。よって、回転数と出力電圧 V_i の関係が分かれ ば、 Ke_2 を同定できる。図13に回転数と出力電圧 V_i の関係を示す。最小二乗法より傾きを0.0012と求め た。よって、タコメータ伝達関数 $K_{e2} = 1.20 \times 10^3$ Vs/radと同定した。

(g) モータ慣性モーメント J_m

モータ慣性モーメントは、モータ印加電圧をス テップ入力としたときの、回転数のステップ応答よ り同定することができる。その様子を図14に示す。

また,本回路におけるモータの一巡伝達関数は, 別添図1より次式のように求められる。

$$\Omega = (V - \Omega K_e) \frac{1}{L_a s + R} K_t \frac{1}{J_m s + D_m} \cdot \cdot \cdot \overrightarrow{\mathfrak{R}}$$
(11)

式(11)を整理し、モータの伝達関数を求める。 その際,別添図1に示す通り、モータの伝達関数を aと置く。aについて整理すると、

 $\Omega = \frac{\Omega}{V} = \frac{K_t}{L_a J_m s^2 + (L_a D_m + R J_m) s + (R D_m + K_t K_e)} \cdots \not \exists (12)$

となる。ただし、(b)と(c)の結果より,*R*>>*L*_aと 見なすことができるので、モータ内部リアクタンス *L_a* = 0と置くことができる。式(12)を1次遅れ標 準形として整理すると、次式が成り立つ。

$$\Omega = \frac{\Omega}{V} = \frac{\frac{K_t}{RD_m + K_t K_e}}{\frac{RJ_m}{RD_m + K_t K_e} S + 1} \quad \cdot \quad \cdot \quad \vec{\pi} \quad (13)$$

ただし,1次遅れ標準形において, τ は時定数,*K* はゲインである。式(13)より

$$\tau = \frac{RJ_m}{RD_m + K_t K_e} \quad \cdot \quad \cdot \quad \vec{\mathbf{x}} \quad (14)$$

と、導くことができる。モータ慣性モーメント J_m について整理すると、次式のようになる。

$$J_m = \frac{\tau(RD_m + K_t K_e)}{R} \quad \cdot \quad \cdot \quad \vec{\mathbf{x}} \quad (15)$$

図14はモータにステップ電圧を印加したときのタ コメータ出力電圧を示す。図14より時定数 τ は 0.37 sと求めることができた。よって,式(15)に 表1の各値と時定数 τ を代入して,モータ慣性 モーメント $J_m = 7.56 \times 10^6 \text{ kgm}^2$ と同定した。

以上により, 各パラメータの同定を行った。(a) から(g)の各値を表1にまとめた。

表1モータ内部パラメータ同定一覧

a	モータチョッパ定数 K _c	2.02	単位なし
b	モータ内部抵抗 R	1.38	[Ω]
c	モータ内部リアクタンス La	310	[µH]
d-1	モータトルク定数 K _i	3.90×10^{-3}	[Nm/A]
d-2	逆起電力定数 Ke	2.31×10^{-3}	[Vs/rad]
e	粘性摩擦係数 Dm	1.39×10^{-5}	[Nms/rad]
f	タコメータ伝達関数 Ke2	1.20×10 ⁻³	[Vs/rad]
g	モータ慣性モーメント Jm	7.56×10^{-6}	[kgm ²]

2.4 極指定法による PI ゲインの設計

PI制御系の構成において, PIゲインを選定する方 法は幾つも提案されている。本稿では, 極指定法を 用いてモデルベースに基づくPIゲインの設計を行う ことにした。初めに, 別添図1の点線部分 a が示 すDCモータの伝達関数を求める。式(13)に表1 の各値を代入すると, 次式が得られる。

 $\alpha = \frac{\alpha}{v} = \frac{137}{0.37s + 1} \quad \cdot \quad \cdot \quad : \ddagger \quad (16)$

式(16)を用いるとP制御におけるブロック線図 は,別添図2と構成できる。また,PI制御における ブロック線図は別添図3と構成できる。

(a) P制御のゲイン設計

初めに、別添図2において指令値 V_r^* から回転角 速度 Ω までの閉ループ伝達関数をDと置く。閉ルー プ伝達関数Dは前向き伝達関数 β と一巡伝達関数 ϵ より構成されており、次式より求められる。

$$\mathbf{D} = \frac{\beta}{1+\varepsilon} \quad \cdot \quad \cdot \quad \vec{\mathbf{x}} \quad (17)$$

別添図2の前向き伝達関数βは,

$$\beta = K_p K_c \alpha = \frac{279K_p}{0.37s+1} \cdot \cdot \cdot \not \exists (18)$$

と求められる。同様に一巡伝達関数 ε は,

$$\varepsilon = K_p K_c \alpha K_{e2} = \frac{0.33 K_p}{0.37 s + 1} \quad \cdot \quad \cdot \quad \overrightarrow{\pi} \quad (19)$$

と求められる。よって、閉ループ伝達関数Dは、

$$D = \frac{\Omega}{V^*} = \frac{\beta}{1+\varepsilon} = \frac{\frac{2+Np}{0.37s+1}}{1+\frac{0.33Kp}{0.37s+1}} = \frac{754Kp}{s+\frac{0.33Kp+1}{0.37}} \cdot \cdot \cdot \overrightarrow{\mathbb{K}}$$
(20)

となる。ここで,*K*_pは比例ゲインである。式(20) より特性方程式を導出すると次式が求められる。

 $s = -(0.89K_p + 2.70) \cdot \cdot \cdot 式$ (21) 従って、比例ゲイン K_b は、

 $K_p = -1.12s - 3.03$ ・・・式 (22) と求められる。式 (22) におけるsは伝達関数の極 であり、任意の負の実数を指定することができる。

(b) PI制御のゲイン設計

(a)の場合同様,別添図3より指令値Vr*から回
転角速度Ωまでの閉ループ伝達関数Dを求める。

別添図3において、制御器の伝達関数を y とおく。 このとき、別添図3の y は次式により求められる。

$$\gamma = \left(1 + \frac{1}{T_s}\right) K_p = K_p + \frac{K_I}{s} \cdot \cdot \cdot \vec{x} \quad (23)$$

また、Tは積分器の時定数である。積分ゲインK_Iは 次式により定義する。

$$K_I = \frac{K_p}{T} \quad \cdot \quad \cdot \quad \vec{x} \quad (24)$$

別添図3より前向き伝達関数 β'は,

$$\beta' = \gamma K_c \alpha = \frac{279 k p s + 279 K I}{0.37 s^2 + s} \cdot \cdot \cdot \neq (25)$$

と求められる。同様に、一巡伝達関数 ε΄は、

$$\varepsilon' = \gamma K_c \alpha K_{e2} = \frac{0.33 kps + 0.33 KI}{0.37 s^2 + s} \cdot \cdot \cdot \vec{\pi}$$
 (26)

と求まる。よって、閉ループ伝達関数D´は、

$$D' = \frac{\Omega}{V_*} = \frac{\beta'}{1+\varepsilon'} = \frac{\frac{279K_p s + 279K_I}{0.37s^2 + s}}{1+\frac{0.33K_p s + 0.33K_I}{0.37s^2 + s}}$$
$$= \frac{279K_p s + 279K_I}{0.37s^2 + (1+0.33K_p)s + 0.33K_I} \cdots$$

(a) 同様に,式(27)より,特性方程式を導出す ると次式が求められる。

 $s^{2} + (2.70 + 0.89K_{p})s + 0.89K_{I} = 0 \cdots 式$ (28) 式 (28)の解を P_{I} , P_{2} と置くと、2次方程式の解 と係数の関係式より、次の式が導ける。

 $2.70 + 0.89K_p = -(P_1 + P_2) \cdot \cdot \cdot \vec{x} \quad (29)$

$$0.89K_I = P_1 P_2 \quad \cdot \quad \cdot \quad 式 \quad (30)$$

式 (29), (30) の関係が成立するので*K_p*, *K_l*の特 性方程式はそれぞれ次式のように成り立つ。

$$K_p = -1.12(P_1 + P_2) - 3.03 \cdot \cdot \cdot \exists (31)$$

$$K_I = 1.12P_1P_2 \cdot \cdot \cdot \vec{\mathfrak{X}} \quad (32)$$

式 (31), (32) における*P*₁, *P*₂は伝達関数の極で あり, 任意の負の実数の重解, または実部が負の共 役複素数として指定することができる。

3. 実験・考察

(a) P制御

別添図4に示すP制御切り替えスイッチをON, I

制御切り替えスイッチをOFFとすることで、P制御 でのDCモータ駆動を行うことができる。P制御時の 比例ゲイン K_{ρ} は、所望の極を式(22)へ代入して 求める。本稿では、極を-3.6、-6.0、-200と変化させ たときの指令値追従特性を確認する。

式(22)を用いて、比例ゲイン K_{ρ} を選定すると それぞれ、1.1、3.7、221となる。この比例ゲインを 出力できるように、別添図4の*4に示す反転増幅回 路の抵抗値をそれぞれ決定する。本回路ではそれぞ れ10k Ω 、33k Ω 、2.2M Ω として実験を行った。

P制御による実験結果を図15に示す。図15は指令 値とタコメータ出力電圧を比較したものである。図 15より,極を小さくするほど(比例ゲインを大きく するほど),定常偏差が小さくなっていることが確 認できる。また,極が-200と極めて大きい場合でも 振動的にはならないと確認できた。よって,P制御 は制御理論に忠実な動作をしていると考えられる。

なお,指令値が0Vのときにタコメータ出力電圧 が0Vとなっていないのは,制御系設計を簡易に行 いたいという観点より,DCモータの非線形な系(偏 差部)にoffset電圧を加えているためである。また, タコメータ出力電圧の立ち下がり時間が立ち上がり 時間に比して長くなっているのは,リミッタ回路を 用いて負の操作量を除去していることから,フリー ラン状態であるためである。従って,この部分に関 しては本稿では議論の対象外とする。

(b) PI制御

別添図4に示すP制御切り替えスイッチ,およびI 制御切り替えスイッチをともにONとするこで,PI 制御でのDCモータ駆動を行うことができる。比例 ゲイン K_{b} および積分ゲイン K_{l} は,所望の極を式 (31)および式 (32)へそれぞれ代入して求める。 本稿では,極を-2.85 (重解),-2.85±j2.85 (共役複素 数)について,それぞれの指令値追従特性を確認す る。このとき極の配置を図16に示す。

図 16 極指定法による極の設計

極が-2.85(重解)の場合,式(31),(32)を用いて 比例ゲイン K_p = 3.4,積分ゲイン K_I = 9.13とそれぞ れ算出した。また,式(24)より積分器時定数T = 0.37sと求められる。よって,別添図4の*5に示す反 転増幅回路の抵抗値33kΩ,積分器の抵抗値82kΩ をそれぞれ決定し,実験を行った。

同様に極が-2.85 ± j2.85 (共役複素数)の場合についても式 (31), (32)を用いて比例ゲイン K_p = 3.4, 積分ゲイン K_I = 18.3とそれぞれ算出した。また, 式 (24)より積分器時定数T = 0.18sと求められる。 よって,別添図4の*5に示す反転増幅器の抵抗値33 k Ω ,積分器の抵抗値39k Ω とそれぞれ決定し,同様の条件で実験を行った。

PI制御の実験結果を図17に示す。図17は指令値と タコメータ出力電圧を比較したもの,および偏差信 号(偏差演算用加算器の出力信号)である。図15と 図17を比較すると,図17のPI制御においては,極の 実部が大きい(比例ゲインが小さい)ものの,定常 偏差が小さくなるように動作している。これは,積 分器の働きによるものと考えられる。

次に,図17において極を重解と指定した場合と, 共役複素数として指定した場合の比較を行う。本来 は,極の虚部を0とすると臨界制動であるために振 動的な応答にはならず,極の虚部を0としない場合 には振動的な応答を示すはずである。図17を見る と,偏差信号において共役複素数と指定して極を与 えた場合,多少の振動的な応答が確認できるが、タ コメータ出力電圧において大きな振動は確認できな かった。これは,DCモータのモデル化誤差等の影響 が考えられるが,詳細は今後の検討課題とする。

4. まとめ

本稿において,アナログ電子回路による模型用 DCモータの速度制御系設計にかかる教材を開発し, 教材として制御理論通りの挙動を示すかを検討し た。その結果,速度フィードバックにおいて,おお むね理論通りの結果を得られた。

今後は、DCモータにおけるモデル化誤差要因を解 明し、指定した極と実機の応答の設計精度の向上に ついて検討する。また、比例ゲインや積分器時定数 を簡易に変更できるように、アタッチメント等を採 用し、教材としての利便性を向上させていく。

<参考文献>

- 一茂木望, "「職業能力開発の実践」実機とシミュレーションを連携したフィードバック制御に係る教材の作成 及びその教育訓練効果に関する検討",平成29年度 職 業能力開発論文コンクール
- 2) 平田光男, "ArduinoとMATLABで制御系設計をはじめよう!", Tech Share, 2012

別添図4 モータ速度制御系教材回路