実践報告

水底観測システムを利用した三次元観測

沖縄ポリテクカレッジ 電気技術科 又吉 貴章・福地 貴広・石本 直幸 (沖縄職業能力開発大学校)

1. はじめに

近年,資源開発等を目的とした海中,海底探査が 多く行われている。この場合の作業環境は,地上と は異なり,多くの安全上の不具合,コスト,作業性 の問題を伴う。そこで,事前に水底の形状をあらゆ る角度から把握しておくことが重要となる。

われわれは超音波を利用し¹⁾, 簡易な水底観測シ ステムを検討した。当初は超音波センサを2個使用 する二探蝕子法²⁾ によりシステムを構成した。その 後の改良型では, センサを1個使用する一探蝕子法²⁾ を採用した。また, 機能的には水底の三次元表示を 可能とし, 水底観測システムの自動化を行った。

2. 試作器

試作機は超音波センサによりセンサ直下から水底 までの距離を測定し、その測定データを処理して水 底を描画する。この超音波センサは、図1に示すよ うなピエゾ素子を原理とする振動子により構成され ている³⁾。

超音波センサを利用した水底観測法は二探触子法, 一探触子法に大別することができ,魚群探知機や測 探機等に使用されている。本試作機に採用した超音 波センサの入力周波数と出力を実測し,その特性を 図2に示す。この特性から,約218kHz付近の超音波 信号の送受信により,水底までの距離測定が可能と なる。

図1 ピエゾ素子の原理

当初, 試作器は図3(a) に示す二探触子法を採 用した。この測定法は超音波を水底に向け射出する

4/2008

超音波センサと、水底からの反射波を受信する超音 波センサを2本別々に利用し、水底までの距離を測 定する。この二探触子法測定はコントロール回路の 構成が簡易であったが、送信用、受信用超音波セン サの離隔距離を原因とする測定誤差が問題となって いた。そこで、図3(b)に示す一探触子法を採用 した。この一探触子法測定では、スイッチング素子 で測定用超音波の射出、受信をコントロールするこ とにより、精度の高い測定を可能にした。また、こ れらの測定法により得たデータを処理して水底の三 次元表示を行った。しかし、従来型試作機において は、水底の三次元表示に関する全プロセスの自動化 を実現することができなかった。

現行型試作機においても従来型試作機同様に一探 触子法測定を採用した。この現行型においては超音 波センサの移動,測定データの収集,水底の三次元 表示を自動で行うシステムを検討,製作した。図4 に試作機全体図を示す。超音波センサをマイコンに より制御し,水底の三次元表示に必要な水深データ をパソコンにより測定する。その後,測定データを 自動処理し,モニタに水底を三次元的に表示する。 このシステムは90×45×45cmの水槽を利用し,機器 の動作範囲により,実質的な測定範囲を70×40×20 (X×Y×Z) cmとした。

図5 システム構成図

3. 水底観測システムの構成

本システムの構成を図5に示し,全体回路図を図 6に示す。この試作機は,①超音波送信ユニット, ②超音波送受信切替回路,③超音波受信ユニット, ④描画システムユニット,⑤振動子移動ユニットに より構成している。

①超音波送信ユニットでは、図2の特性より、
218kHzの信号を発振し、超音波センサへ入力する。
②超音波送受信切換回路は、送信波と受信波が混在

図6 全体回路図

した送受信信号から受信信号のみを検出し,次段回 路へ入力する。③超音波受信ユニットは,距離測定 に必要な伝搬時間を形成する。④描画システムユニ ットは,計測された伝搬時間信号を用いてLED表示 および水底の二次元表示を可能とする。この二次元 表示データを複数得ることにより,図7に示すよう な水底の三次元表示を可能とした。⑤振動子移動ユ ニットはモータを制御し,超音波センサの移動を行 っている。

4. 水底が斜面である場合の測定について

本試作機は超音波センサにより超音波を射出し, その反射波受信までの時間により水底までの距離を 測定する。したがって,射出される超音波の進行方 向に対して,水底が水平であれば,超音波の反射が 良好であるために,精度の高い距離測定が可能であ る。しかし,射出される超音波の進行方向に対して, 水底が斜面である場合,反射波の受信が検出不能と なり,水底までの距離測定が困難となる。

超音波が反射する場合,あらゆる方向に拡散する と考え,水底が斜面であっても垂直方向に微弱な受 信波検出が可能であると考えた。図8に水底が斜面 である場合の反射波を示す。この図の上部波形で, 微弱な反射波が確認できる。この反射波は図9のF 端子付近で検出した信号である。そこで,図9のF 端子付近に回路aを追加することで,水底が斜面で ある場合の反射波受信が可能となった。その結果を 図8の下部波形に示す。この超音波受信回路の改良 により,斜面の測定が可能となった。

5.まとめ

本試作機は一探触子法を採用し,水面から水底ま での水深データを処理することで,図7に示すよう な水底の三次元表示化を行った。また,水底までの 距離測定に必要なプロセスを一括制御し,従来型試 作機では困難であった水底の三次元表示の完全自動 化を実現できた。

従来型試作機,本試作機において水底が斜面であ

図7 水底の三次元表示

図8 斜面測定における反射波

図 9 超音波受信回路

る場合,測定の不具合が問題となっていた。今回, 超音波受信回路の改良により水底の斜面においても 測定が可能となった。

<参考文献>

- 1) 丹波登: 『超音波計測』株式会社昭晃堂, pp.1-2
- 2) 坂田亮: 『超音波と材料』株式会社裳華房, pp.46-47
- 3) 谷腰欣司:超音波とその使い方, pp.57