第8回ポリテックビジョン

中国ブロック

LED広告看板の製品化モデルの製作

ポリテクカレッジ島根 (中国職業能力開発大学校附属 島根職業能力開発短期大学校)

小柳 坂本 沂藤

雅幸・堀本 政典・竹内 邦博・藤田

富雄・柞原 良史

一郎

海外職業訓練協会

1.はじめに

島根県西部(石見地方)において活動を行ってい る事業主団体電気電子グループ傘下の企業において, 製品の高度化,高付加価値化および人材の高度化に 取り組んでいる。現在はLEDパネルの生産を大手 電器メーカー相手に行っている。

数年前より同団体向けに能力開発セミナーの実施 や相談援助を行ってきた。それら支援のなかから、 新たな企業戦略の一環として,独自の製品開発,そ れに伴う技術の向上,および技術者の育成が要望と してあげられた。

そこで,これら要望を事業主団体研究開発事業 (以下F方式)として,団体傘化企業へのLED広告看 板の製品化モデルの製作として取り組むことにした。

2. LEDとは

近年,青色LEDが注目を集め,光の三原色RG Bの完成に伴いフルカラー表示が可能になったこと からもそれがうかがえる。また,白色 LEDを使用 して,従来の蛍光灯の代わりに電飾看板の光源とし ての使用も出てきている。

特徴としては以下のものがあげられる。

- ・最近の L E D は高輝度タイプの種類も多く、屋内 外を問わず幅広く使える。
- ・LEDは寿命が長く、耐衝撃性や耐候性に優れて いるため、メンテナンスの必要がほとんどない。

・LEDはネオン看板などと比べると消費電力が少 なくてすむ。

信号機・自動車のライトで使用され,今後も市場 における需要が見込めると考えられる。

3. 開発概要

団体傘下企業が生産開発しているLEDを用いた, 大きさ,ドット数,色数などの違う多種多様のLE Dパネルの開発を行っている。そのなかより今回, は24ドット×24ドットのLEDパネルを使用して製 品開発を行うことにした。仕様・写真を表 1 および 図 1 に示す。

表1 LEDパネルの仕様

ドッ	ト構成	24dot × 24dot				
サイズ		60.96mm × 60.96mm				
絶対最大定格	順方向電流	15mA				
	ピーク順電流	100m A				
	順方向電圧	3 V				
	許容損失	5.5W				
格	動作温度	- 20 ~ + 50				
ピーク発光波長		567nm				
推奨動作電流		40 ~ 60m A				
重	順方向電圧	2.0 V				
的	順方向電流	10mA				
電気的光学的特性	輝度	1700cd/m ²				
	順方向電流	10mA				
	逆方向電流	100 μ A				
特徴	斜め方向からの文字認識が可能である					

33 4/2004

図1 LEDパネル

4.基本方針

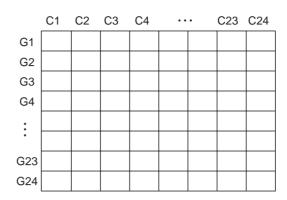
LEDパネルのみでの販売ではなく,制御装置 も含めた1システムという形での製品化モデルの 作成を行う。

顧客のことを考え、専門知識がなくても抵抗なく安易に操作ができる仕様にする。

今回のF方式で培われた技術を応用し,担当者 自身でさらなる改良が可能となるように支援する。 以上3項目を念頭に置き,製作を行う。

5.制御装置

まず, L E Dパネルにおいて列単位でデータを表示させるように, データの扱いを図2および図3のように設定を行った。


つまり, 1列分を3アドレスで表すようにし,基盤の作成を行うものとした。

LEDパネルのブロック図を図5に示す。

行デコーダとして74HC138, 行ドライバとして 2SA1300を使用した。

LEDの動作電流は40mAとし,LED用定電流ドライバとして8ビット用(東芝TB62705CP)を1枚のパネルで3個使用している。TB62705CPは,8ビットの電流値を可変可能な定電流回路と,これをオンオフ制御する8ビットシフトレジスタ,ラッチ,およびゲート回路から構成された定電流LEDドライバである。

片面基板としたことから, LEDモジュール以外

G1~24:緑 C1~24:列 図2 表示器の対応関係例

列	アドレス	データ								
C1	00000000	G1	G2	G3	G4	G5	G6	G7	G8	
C1	00000001	G9	G10	G11	G12	G13	G14	G15	G16	
C1	00000010	G17	G18	G19	G20	G21	G22	G23	G24	
	•									
	•									
C24	01000110	G9	G10	G11	G12	G13	G14	G15	G16	
C24	01000111	G17	G18	G19	G20	G21	G22	G23	G24	

図3 表示データ構成

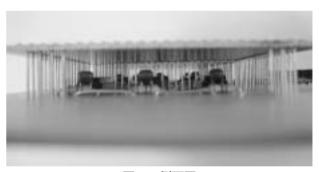
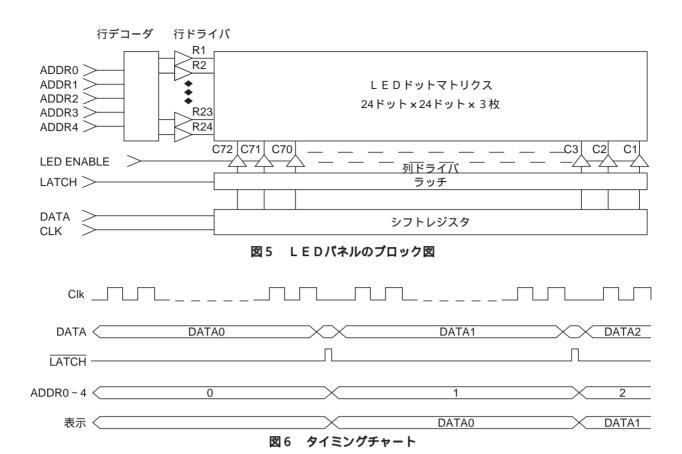



図4 側面図

にかなりのスペースを必要とした。一部はLEDモジュールの下へ配置している。写真を図4に示す。

マイコンからは,行デコーダへの出力のほか,LEDのオンオフ制御,ラッチ制御,データ出力,およびクロック発生である。タイミングチャートを図6に示す。

DATA(シリアル)はCLKの立ち上がり時に 読み込まれ,次のCLKによりシフトされる。C1~ C72までデータを入力した後,ラッチを一旦オフに すると入力されたデータが表示される。ラッチを再 びオンにし,行デコーダの入力をインクリメントさ せ,24行分繰り返すと3枚分のデータが表示される。

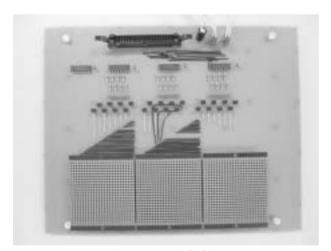


図7 ハード完成図

6. ソフトウェア

今回はパソコンを使用して設定の変更を行うという前提,および安易に設定変更を行わなければならないという点を考慮し,GUIベース(日本語入力・マウス操作)で設定ができるようにすることとした。

6.1 文字の扱い

ソフトウェアベースでパターンを作成し,文字を 表すこととした。

1 文字の使用ドット数を16ドット×16ドットまたは24ドット×24ドットを使用される場合が多いが,今回は1パネル当たりの使用効率を考え,3文字×3文字までの表示が行えるよう,8ドット×8ドットを1文字とし,行うこととした。

6.2 データの扱い

データの扱いを L E Dパネルの列単位で行っているため,データとアドレスの位置関係を式1に当てはめて求めることとした。

 $((A-1)\times24)+(B-1)+(C-1)\times3\cdot\cdot\cdot1$

A:文字の列番号

B:文字の行番号

C:ビットパターンの列番号

6.3 文字認識

認識から表示まで簡易的な流れを図8に示す。入

4/2004 35

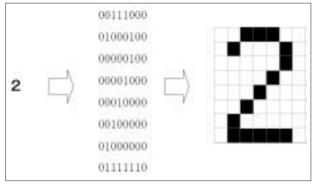


図8 認識の流れ

図9 文字サイズ変更

力文字を基本ビットパターンに対応させ,最終的に ドットパターンとして表示を行うようにした。

6.4 文字サイズ変更

単純文字サイズ変更とし,横倍角・縦倍角機能で対応を行う。仕組みを図9に示す。ビットパターンをn倍する方法を採用した。

6.5 スクロール

ループのスタートアドレス位置を移動させることによって行わせる。あわせて,タイマー機能を使用し速度の調整も付加させた。また,無表示よりのスクロールにおいては0000000のデータを先頭部および最後部に式2のアドレス分付加を行うものとした。

(3×24)×n・・・2 n:パネル枚数

6.6 色変更

今回,文字の扱いはソフトベースによるビットパターン識別を行っているため,色の変更は図10に示すようにビットパターン(0,1)を反転することによって容易に実現した。

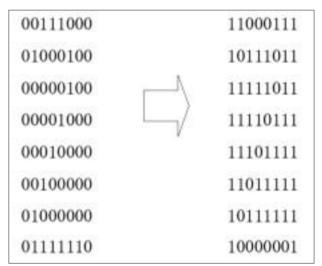


図10 色変更

図11 インターフェース

以上の機能を容易に実現できるように作成したインターフェース画面を図11に示す。

7. おわりに

今回の研究開発にて製作した L E Dシステムは, 当初計画の制御装置,およびソフトウェアの制作を 行うことができた。

今後の展開として,使用用途によって付加機能の 充実など,まだまだ改善の余地を多々残している。 最後に共同研究開発を行うに当たり関係企業の方々 に深く感謝いたします。

36 技能と技術