# 実践報告

# 三角カム機構における 運動曲線計測システムの構築

北陸ポリテクカレッジ 山下 誠 (北陸職業能力開発大学校)

化すると同時に,リアルタイムに計測できるシステ ムを構築した。構築したシステムで,三角カム機構 の理論的な運動曲線と実測値を比較するとともに, 形状不良に伴う運動曲線への影響を調査した。

## 2. システムの仕様

三角カム機構の運動曲線を計測できるシステムを 構築するに当たり、システムの仕様は以下のとおり にすることとした。

- 三角カム機構の運動曲線をリアルタイムに計測 できること。
- (2) 運動曲線の計測は、パソコンで作成したGUIで
  行うこと。また、計測データは、表計算ソフトで
  解析できること。
- (3) カムの回転方向は時計回りとし、駆動モータの 選定は、カムの負荷トルクに対して十分であること。また、回転の制御方法は簡単であり、制御回 路は簡易であること。
- (4) 三角カム機構の理論的な運動曲線と計測データが、比較・検討できること。

#### 3. 三角カム機構と運動曲線

三角カムとは,確動カムの一種である。確動カム とは,機構学的な拘束を与えたカム装置であり,重 力やばねの力を借りることなく,従動節を確実にカ ムの輪郭曲線に追従させることができるカムのこと である。

## 1. はじめに

工作機械や自動車などの動力を伝達する機械や, 時計,カメラなどの家電機器,FMSやFAを構成す る自動化機器には,必ず何らかの機構が採用されて いる。

機構とは,機械の原動となる運動を,目的とする 運動に変換する仕組みであり,さまざまな機械部品 の組み合わせで構成されている。そして,個々の内 容の多種多様な組み合わせが,新たな機構を生み出 している。

機構の動作は,理論的に解明されており,理論に基 づいていることが期待されるが,実際に動作してい るかは不明である。機構の動作は,機械に関連して いるため,設計に倣っていないと,機械の故障や破 損へ波及する。特に,工作機械や自動化機器は,高 精度な位置決めを必要とするため,採用する機構の 動きは,製品の精度を決定する要因となる。したが って,実際の機構が,理論値どおりに動作している かを確認することが重要である。機構の実動作を把 握することは,工作機械や自動化機器,FAラインの メンテナンスを行う際に,必要不可欠な事柄である と考える。そこで,実際の機構の動きをリアルタイ ムに計測し,機構を構成する機械部品の幾何学的な 形状誤差を検出できるシステムを構築すると同時に, 機構の動作を計測する手法を提案することとした。

本稿では、平成12年度の総合制作実習で製作した 三角カム機構<sup>1)</sup>をモデルとし、カムの変位を可視 三角カムの形状を図1に示す。カムの外形は OPQを中心とする半径r2の円と、それぞれの円にお ける半径r1の接円で構成されている。よって、カム の幅Lは常にr1+r2で一定となる。図2に三角カム機 構を示す。原動節であるカムが、点Oを中心に回転 すると、従動節であるカムフォロアは間欠往復直線 運動を行う。図2の状態を0°とした場合、点Oを 中心にカムを時計回りに回転させたときの回転角が *θ*で、点Oからカムフォロアに接している円弧の中 心との距離をeとすると、従動節であるカムフォロ アの変位sは、表1に示す関係で表される。したが って、三角カムの理論的な動作の変位曲線が得られ、 この曲線を図式微分法<sup>2)</sup>を用いて速度曲線と加速 度曲線を導出した。図3に算出した運動曲線を、① 式に導出に使用した式を示す。

$$v = ds/dt = ds/d\theta \times d\theta / dt = \omega \times ds/d\theta$$
$$a = d^2 v / dt^2 = \omega \times ds/d\theta \qquad (1)$$

ただしvは速度, aは加速度, sは変位,  $\theta$ は回 転角,  $\omega$ は角速度とする。

#### 4. システム構成と計測条件

構築したシステム(図4)は,駆動部,検出部, 表示部の3つで構成されている。また,本計測シス テムに使用した機器を表2に示す。

#### 4.1 駆動部

駆動部には,減速機付きDCモータを使用し,カ ムの負荷トルクに対し,十分な選定となっている。 駆動用モータの制御方法は,リレーシーケンスとす ることとした。

#### 4.2 検出部

検出部には、反射形距離センサを使用し、カムフ オロアの変位を検出している。使用した距離センサ の高さと、カムフォロアの高さとが異なったため、 白色のアルミ板を取り付けた。距離センサの取り付 けには、製作した専用の冶具を使用し、微調整を可



表1 角度別の変位

| カムの回転角 $\theta$                                                                                                                                                                                                                                                                                                                              | 変位 s                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{cccc} 0^{\circ} \leq \theta \leq 30^{\circ} \\ 30^{\circ} \leq \theta \leq 90^{\circ} \\ 90^{\circ} \leq \theta \leq 150^{\circ} \\ 150^{\circ} \leq \theta \leq 210^{\circ} \\ 210^{\circ} \leq \theta \leq 270^{\circ} \\ 270^{\circ} \leq \theta \leq 330^{\circ} \\ 330^{\circ} \leq \theta \leq 360^{\circ} \end{array}$ | $\begin{array}{l} s = r_2 \\ s = r_2 - e \cos{(\theta - 30^\circ)} \\ s = r_1 + e \sin{(\theta - 60^\circ)} \\ s = r_1 \\ s = r_1 + e \sin{(\theta - 60^\circ)} \\ s = r_2 - e \cos{(\theta - 30^\circ)} \\ s = r_2 \end{array}$ |





図4 計測システム

能にすることとした。また,距離センサの出力が電 流出力<sup>3)</sup>であったため,出力端に標準抵抗(250Ω) を取り付け,電圧出力とした。

#### 4.3 表示部

表示部には、仮想計測ソフト(National Instruments社)を使用して作成した仮想計測器 (VI)を使用した。リアルタイムで計測された変位 は、テキストファイルで表計算ソフトへ出力して、 採取したデータの解析を行った。

#### 4.4 計測条件

計測条件は、カムの変位を確実に可視化するため に、仮想計測器のスキャンレートは、0~1000 [scan/s]とした。また、本計測システムで使用する 反射形距離センサの測定範囲は、カムの変位が理論 値では80[mm]であるので、確実に測定するために 100[mm]とした。なお、今回使用するセンサの測定 範囲は、250[mm]~350[mm]であり、測定範囲とは、 センサの距離と出力との関係(図5)が直線性で、 応差の影響を受けない部分のことをいう。

#### 5. 仮想計測器(VI)の作成

三角カム機構の運動曲線を計測するに当たり,既存の計測器では,計測条件の設定や表示方法が不適応であるため,仮想計測ソフト(National Instruments社)を使用し,運動曲線を計測するための仮想計測器を作成することとした。

仮想計測器<sup>4)5)6)</sup>とは,従来の計測器と似たデ ータの収集,処理,表示を行うソフトウェアモジュ ールである。仮想計測器には,フロントパネル,ブ ロックダイアグラム,アイコンまたはコネクタの3 つの主要な構成要素がある。フロントパネルは,実 際の計測器での正面パネルに相当し,ノブ,表示器, グラフ,その他の制御器で構成され,仮想計測器の GUIを規定している。ブロックダイアグラムは,プ ログラミングすべき仮想計測器の動作内容を図式的 に表現しており,ユーザがフォーミュラノード,端 子をワイヤリングし,実行可能なコードを作成する。







図7 作成した仮想計測器(ブロックダイアグラム)

本システムで作成した仮想計測器は、任意に計測 条件を設定でき、変位をリアルタイムに表示できる ものとした。図6に仮想計測器のフロントパネル、 図7にブロックダイアグラム、図8に計測するまで のフローチャートを示す。

## 5.1 計測データ収集条件の設定

計測データ収集の条件は、計測に必要な条件(入 力範囲,使用するデバイス番号,チャンネル番号, スキャンレート)であることとし、AI Config VIで 集約することとした。AI Config VIとは、アナログ 入力を行う際に、必要な条件を集約する役割をもつ VIである。

#### 5.2 計測データの収集

計測データの収集には、AI Single Scan VIを使 用した。このVIは、1スキャンごとのデータを収 集するので、Whileループを使用することにより連 続的に計測データを収集可能にした。なお、AI Single Scan VIは、AI Config VIで集約された条件 に基づき、アナログ入力を行うVIである。

## 6. 計測方法

計測方法の概略を図9に示す。検出対象は,三角 カムの回転に伴うカムフォロアの変位であり,セン サから出力される電圧値をA/D変換ボードを介し てパソコンに取り込み,仮想計測器で表示させた。 また,電圧値を変位に換算するため,あらかじめセ ンサの校正を行って係数 α を求め,取り込んだ電圧 出力値に乗じて変位とした。求められる変位 *s* は次 式となる。

 $s = a - (b+t) \quad (2)$ 

ただし,距離センサの投受光部とカムの回転中心 Oとの距離を*a*,計測値を*b*,カムフォロアの肉厚 を*t*とする。



## 7. 変位曲線計測結果の評価および検証

実際に計測された変位曲線と理論値を比較した結 果を図10に示す。理論値の変位は80.0mmであるの に対し実測値では、79.96mmであった。理論値と実 測値の差は、検出部で使用している距離センサ自体 が持つ精度誤差や、カムとカムフォロアのクリアラ ンスであることが考えられる。しかし、理論値と実 測値とがほぼ一致していることから、この計測シス テムを使用することによって、三角カム機構の変位 曲線を可視化することができた。

次に,計測結果において,理論値と実測値との間 にわずかながら差を生じた。そのため,原因を調査 するべく差異の検証を行うこととした。検証方法は, カムとカムフォロアの間に一定のクリアランスをも ったモデルを作成して,変位曲線を計測し,クリア ランスを持たせていない場合と比較し,検討するこ ととした。図11に結果を示す。クリアランスが有る ときの変位曲線は,回転角60°および240°近傍で 急激に変化しており,このことから,カムがカムフ ォロアに対し,衝撃を与えていることが確認でき, 緩和曲線の重要性が認識できる。さらに,クリアラ ンスが有るときの変位曲線は,無いときと比較する と位相ずれを起こしていることが確認できる。この ことから,クリアランスの存在は,変位のみならず, 回転角にも影響を及ぼすことがわかる。

これらの検証結果は,構築した計測システムは三 角カム機構の変位曲線を可視化するのみならず,幾 何学的な形状不良を検出できる可能性を示唆してい る。

### 8. おわりに

三角カム機構の運動曲線を計測できるシステムを 構築し,製作したモデルを検証した結果,以下のこ とがわかった。

(1) 三角カム機構の実際の変位曲線が容易に確認で
 き,理論値に対する実測値のずれの検出が可能となった。



図11 クリアランスの有無による変位曲線の違い

- (2) 三角カム機構を構成する部品の幾何学的な形状 誤差が確認できた。
- (3) 本計測システムを水平展開することで、さまざ まな機構の動作が確認できる。
- (4) 機構の変位を計測する手法が,提案できた。

最後に,本計測システムを構築するに当たり,ご 助言賜りました当大学校生産技術科 二ノ宮進一 氏,東海職業能力開発大学校付属浜松職業能力開発 短期大学校生産技術科 奥猛文氏,雇用・能力開発 機構本部 原裕之氏に深く感謝申し上げます。

#### <参考文献>

- 1) 八谷公三:「カム機構の設計・製作」,『平成12年度北 陸職業能力開発大学校機械システム系総合制作実習発表 会予稿集』.
- 2)稲田 重雄,森田 釣:『大学課程 機構学』、オーム 社.
- 3) SICK:「アナログ距離センサテクニカルデータシート」.
- A) National Instruments: 『LabVIEWデータ集録ベーシックマニュアル』.
- 5) National Instruments: 『LabVIEWユーザーズマニュ アル』.
- 6) 井上泰典: 『LabVIEWグラフィカルプログラミング』, 森北出版株式会社.

