教材開発

パワーエレクトロニクス実験・実習教材

誘導モータの制御技術 その6

職業能力開発総合大学校 山本 修・佐々木英世・荒 隆裕

10. 調整および動作確認

10.1 アナログ・ディジタルユニット

ここでは,アナログ・ディジタルユニットを使用 してベクトル制御運転を行う場合の調整および動作 確認方法について各部ごとに説明する。(アナロ グ・ディジタルユニットの全回路図については, <その4 > を参照のこと)。

(1) 速度検出部の調整

速度検出部の調整について述べる。まず,F/V変 換器の出力を調整する。エンコーダのA相入力端子 に+5〔V〕, B相入力端子に25〔kHz〕の方形波を 入力し, ユニットの電源を投入する。リセット停止 スイッチ信号を入力し,次に始動動作スイッチ信号 を入力して制御回路を動作させる。その後,F/V変 換器の出力である図29の 点(フィルタ回路を通過 後の出力)が2.5〔V〕となるように図29のVR1を調 整する。調整後,この信号がアナログスイッチ (HC4053)を通過した図29の○点において,リセッ ト停止スイッチ信号を入力したときに0〔V〕,始 動動作スイッチ信号を入力したときに+2.5〔V〕と なっていることを確認する。調整終了後は、リセッ ト停止スイッチ信号を入力して制御回路を停止した 後,エンコーダ入力端子の入力信号を取り外し,元 の状態に戻す。

(2) PI速度制御部の調整

PI速度制御部の調整は,まず,励磁分電流指令値 (-*i**_s)の出力である図30の 点が,設計した値と なるよう図30の可変抵抗VR2を調整する(本稿では, 1 [A] / 1 [V] で設計してあるので,例えば, i*s=0.7 [A] ならば-0.7 [V] に調整する)。また, 回転角速度指令値(- *m)の出力である図30の 点についても,可変抵抗VR3によって調整する(例 えば,回転速度指令値を1500 [rpm]にするのであ れば,-2.5 [V] に調整する)。

次に, PI速度制御回路の動作確認のため, 図30の 太線で示すように, PI速度制御回路の出力である OP1の出力端子とOP2の入力端子(+端子)を短絡 する(図30の太線で示す短絡線)。このとき, OP2 の入力端子(+端子)に接続していた前段のF/V変 換器の出力信号線を外しておく。この後,(1)と同様 にエンコーダのA相入力端子に+5〔V〕, B相入力 端子に25〔kHz〕の方形波を入力し,制御回路を動 作させる。このとき,トルク分電流指令 i*。の出力 端子である図30の ◎点がリセット時に0〔Ⅴ〕,動 作時に+2.5 (V),ならびに励磁分電流指令値信号 ⅈ*。の出力端子である図30の○点がリセット時に0 [V],動作時に+0.7[V](本稿における設計値) となることを確認する。調整終了後は,図30の短絡 線を外し,F/V変換器の出力端子をオペアンプOP2 の+端子に接続して配線を元の状態に戻す。

(3) すべりおよび電源角周波数演算部の調整

すべりおよび電源角周波数演算部の調整は,(1)項 と同様に,エンコーダのA相入力端子に+5〔V〕, B相入力端子に25〔kHz〕の方形波を入力する。ま た,図31の 点に入力する,トルク分電流指令値 (*i**s,PI速度制御部)の信号線を切り離し,0〔V〕 を入力する(トルク分電流指令が0〔A〕の状態)。

図29 速度検出部の調整

次に, A/Dコンバータ, D/Aコンバータに同期ク ロックが入力されていることを確認(図31 点)した 後,制御回路を動作させる。このとき,回転角速度 ()の出力である図31の 点が+2.5 [V], すべり |角周波数(-3 ∞)の出力である図31の □ 点が,ほぼ 0[V]となっていることを確認する。その後,電源 を切り,0[V]を入力していた図31の 点に+2.5 [V](F/V変換器の後のフィルタ回路出力(図29 の 点 から取る)を入力する(トルク分電流指令が +2.5〔A〕の状態)。次に電源を投入し,制御回路 を動作させる。このとき,の出力(図31)点)が, $-\cdot \frac{R_r}{L_r} \cdot \frac{i^* s}{i^* s} = \frac{1}{40}$ 2.5 1 1 $-.\frac{1}{0.0708}.\frac{2.5}{0.7}$ 400〔mV〕(< そ 40

図31 すべりおよび電源角周波数演算部の調整

の4>8.3節参照)だけ大きくなっていること,な らびに,-3 。の出力(図31 点)が,約-400 [mV]となっていることを確認する。確認終了後, エンコーダの入力信号を取り外すとともに,向点に トルク分電流指令値(*i**。)の信号線を接続し,配 線を元の状態に戻す。

(4) 電源角 の作成部の調整

電源角 の作成部は, V/F変換器の出力を調整す る。(3)項と同様,図310 点に0〔V〕を入力し, トルク分電流指令値(*i**₅)が0〔A〕の状態とな る仮結線を行う。次に,制御回路を動作させる。こ のとき,V/F変換器の入力信号である図320 点 が,+2.5〔V〕になっていることを確認する。さら

図32 電源角の作成部の調整

に, V/F変換器の出力信号である図32の / 点が, 25 (kHz)となるようにVR4を調整する。

(5) - 三相座標変換部の調整

- 三相座標変換部の調整は,(4)項の動作状態 において, - /三相座標変換部の出力であるa相 電流指令値(*i*ss*),b相電流指令値(*i*bs*)の波形を オシロスコープで観測し,以下のことを確認する。 (a) 波形全体が滑らかで 連続的な正弦波であること。 (b) 周期が20[ms](50[Hz])であること。

(c) 振幅が $\sqrt{\frac{2}{3}} i^*$ 。〔V〕になっていること。

次に,電源をオフして(3)項と同様に,図31の 点 に+2.5 [V]を入力し,トルク分電流指令値(*i** _s) が+2.5 [A]の状態の仮結線を行う。次に,制御回 路を動作させる。このときの*i**_{ss},*i**_{bs}の波形をオシ ロスコープで観測し,以下のことを確認する。

(d) 周期が20 [ms](50 [Hz])であること。

(e) 振幅が $\sqrt{\frac{2}{3}}$ ・ i^{2} + i^{2} s となっていること。

10.2 インバータユニット

インバータユニットでは,電流指令値と電流値 (実際値)が入力されたときに,

- (a) 電流指令値と電流値(実際値)に同期したヒス
 テリシスコンパレータの出力(IGBTのON/OFF
 信号)が得られていること。
- (b) デッドタイムが生成されていること。
- (c) 主回路のIGBTにON/OFF信号が入力されていること。

を各相ごとに確認する必要がある。

それらの方法については,以下のとおりである (インバータユニットの回路図については,<その 5 >参照)。

(1) (1) (1))相の上段アームと下段アームの動作確認 a相電流指令値(i*as)の入力端子に振幅5 (V) の正弦波,a相電流値(ias)の入力端子に0 (V) を入力し,このi*as(図33)に対するヒステリシ スコンパレータ出力(a相ON/OFF信号,図33) および,デッドタイム作成回路通過後のa相 ON/OFF信号(図33)が,図33と同様になるこ とを確認する。また,最終的に主回路のa相に対する IGBTのG(ゲート)-E(エミッタ)間に,オン 時+15(V),オフ時に-5(V)が入力されている ことを確認する。

(2) は V 相の上段アームと下段アームの動作確認
 b相信号であるi*bs, ibsに対して,(1)項のa相と同様の入力条件を与え, b相に対する各出力信号が図
 33となり,さらに,IGBTにオン時に+15(V),オフ時に-5(V)が入力されていることを確認する。

a 相電流指令値 i_{a}^{*} , a 相のON/OFF信号, デッドタイム作成回路を通過した後の a 相のON/OFF信号

図33 インバータユニット各部の波形

(3) (W)相の上段アームと下段アームの動作確認 i*asに振幅5(V)の正弦波,i*bs=ias=ibs=0(V) を入力したとき,i*cs=-i*as-i*bs,ics=-ias-ibsよ リ,c相電流指令値i*csは振幅5(V)の正弦波,c相 電流icsは,0(V)が入力されたことになる。つま リ,c相に対し(1)項および(2)項と同様の入力条件が 与えられる。よって,c相に対する各出力信号が図 33となり,さらに,IGBTに適正な信号(オン時 に+15(V),オフ時に-5(V))が入力されている ことを確認する。

11. 総合試験

設計・製作した3つのユニット(アナログ・ディ ジタルユニット,インバータユニット,モータユニ ット)を組み合わせたかご形誘導モータの速度制御 (ベクトル制御)試験の実施例について述べる。

各ユニット間の接続は,まず,モータユニットの 出力(ロータリエンコーダA相,B相信号)をアナ ログ・ディジタルユニットに接続し,アナログ・デ ィジタルユニットの出力(三相交流電流指令値)を インバータユニットの制御回路に接続する。インバ ータユニットの主回路の直流電源入力部には,直流 安定化電源+*Eac*を接続し,三相交流出力部には, モータユニットにおける三相かご形誘導モータの固 定子巻線端子(((U), (V), (W))を接続する。

また,アナログ・ディジタルユニットにおける制 御パラメータの設定値例は,以下のとおりであり (詳細は, < その3 > < その4 > を参照),これにも とづき速度制御試験を実施する。

回転速度指令値(*m): 1500 [rpm]
励磁分電流指令値(i*s): 0.7 [A]
トルク分電流指令値(i*smax): 5 [A]
Pl速度制御器比例ゲイン(K_ρ): 1.66
Pl速度制御器積分ゲイン(K_ρ): 33.2
(速度制御系の交差角周波数: 100 [rad/s])
トルク定数(k): 0.262 [N·m/A]
2次時定数(L_ℓ/R_ℓ): 0.0708 [s]
速度制御試験は,まず,アナログ・ディジタルユ

ニットのリセット停止スイッチをオンして制御回路 を停止状態(三相交流電流指令値が0〔A〕)にし, インバータユニットの主回路の直流電源を0〔V〕 100〔V〕に設定する。次に,アナログ・ディジ タルユニットの始動動作スイッチをオンして,制御 回路を動作させる。これにより速度ステップ入力が 与えられ,このときの各部の応答波形をディジタル オシロスコープで測定する。

図34は,回転速度指令値を1500 (rpm)に設定し, 回転速度指令0 (rpm) 1500 (rpm)の速度ステ ップ入力試験を行った結果である。

図34(a)は,回転速度指令値- *m(回路構成上, 負の値となっている),図34(b)は,回転速度の実際 値 mである。図34(a),(b)の結果より,0 1500 [rpm]の速度ステップ入力に対して400[ms]以 内に速度が整定しており,良好な制御特性が得られ ていることが確認される。

また図34(c)は,このときの励磁分電流指令値i*。, 図34(d)は,トルク分電流指令値i*。である。図34(c), (d)より,励磁分電流指令値i*。は,負荷状態によら ず一定で,トルク分電流指令値i*。は,回転速度が 始動から指令値付近まで最大値の5〔A〕を示し, 指令値に到達するに直前で速やかに下降し,一定値 に落ち着いていることが確認される。

図34(e)は,すべり角速度-3 。(回路構成上,負の3倍値となっている)である。この図34(e)から, 図34(d)に示したトルク分電流に比例したすべり角速 度が出力されていることが確認される。

図34(f)は,このときの電源角速度 ,図34(g)は, アナログ・ディジタルユニットからインバータユニ ットに入力されるa相電流指令値i*ss,および図34(h) は主回路の電流センサからインバータユニットにフ ィードバックされるa相電流値(実際値)issである。 これらの図34(f),(g),(h)から過渡時においても良好 な電流制御が行われていることが確認される。

12.まとめ

三相かご形誘導モータの固定子巻線の設計・製作 からそれのベクトル制御までを一貫して学習できる パワーエレクトロニクス実験・実習教材の開発につ いて述べた。

本教材は、4つのユニット(アナログ・ディジタ

図34 速度ステップ入力に対する過渡応答波形

ルユニット,コンピュータユニット,インバータユ ニット,モータユニット)から構成され,各ユニッ トのインターフェースが統一されている。したがっ て,ユニットごとの学習が可能であり,パワーエレ クトロニクスとして総称される,三相誘導モータの 理論と実際,半導体電力変換技術,高性能可変速制 御技術およびソフトウェアに関する知識を習得でき る。また,各ユニットを組み合わせた実験・実習を 通じて理論とその実際を対応させた学習を進めるこ とができる点に,その特徴がある。

本教材の活用により,学生の実験・実習,各種指 導員研修および社会人に対するセミナーなど,パワ ーエレクトロニクスに関する技術教育に寄与するこ とができれば幸いである。

最後に,本稿執筆の機会を与えていただいた能力 開発研究センター普及促進室 松本 義江氏,なら びに熊一 修氏に深く感謝の意を表する次第である。