実践報告 3

メカトロニクス教材としての制御系設計 - 振り上げ倒立振子制御を例として -

北海道ポリテクカレッジ (北海道職業能力開発大学校)

成田 忠雄

1.はじめに

近年、制御対象を状態空間法で扱う現代制御理論 は,情報処理技術の発展に伴い制御系設計に用いら れて、設計理論の主流を占めつつある。

電気電子・機械,化学・工業化学,建築・土木の 工学分野から医学,経済,自然科学などの各分野に おいて広く利用されている。この理論は数学的要素 が強いということで現場的には敬遠されがちな評価 であったが,計算アルゴリズムをもとにした制御系 設計援用ソフトウェアの普及により,計算時間の短 縮で繰り返し設計が容易となり評価しやすくなった のが要因と考える。

そこでメカトロニクス分野における制御技術の教 育訓練に導入し,この設計理論を効率良く展開する ための諸条件は何かを得るため,制御対象の典型的 モデルとなっている倒立振子安定化制御の設計と実 験を試みたので報告する。

2.制御対象と基礎工学

図1に示すシステムを,機構系と電子系のメカト ロニクス部と状態安定化という制御技術の面からと らえる。また工作技術のハードおよび制御系設計の ソフト面も含めて以下の分野別の項目(~)に 分けることで,個々の工学実習課題が目的を持った 明確な展開と系統づけができる。

() メカニズム

タイミングベルト,プーリ・ガイド軸などの台車 系の駆動部と振子剛体・軸受けの振子部の機構設計

A/D converter A/D converter Potentionneter DC.motor olator Ang Transmitter Amp ~ 20mA.0 ~ 5 Servo Ann A/D D/A 制御系設計CAD MATLAB+CONTROL-SYSTEM TOOLBOX µDACS+µDPACS etc... Converte 制御アルゴリズム MS-C,Q-Basic etc. Personal Conputer SUN/SPARC Personal Conputer

図 1 制御対象と制御システム

技術

() エレクトロニクス

ポテンショメータ,エンコーダ,アンプなどの電 子回路・センサ検出部とA/D・D/Aコンバータ,パ ソコン等のインタフェース部の知識と利用技術

 システム解析技術 (

固有値,安定判別,可制御・可観測性など特性解 析のための工業数学・動力学・制御工学知識とその 応用

() 制御アルゴリズム

制御プログラムの記述に用いられるBASIC言語 やC言語などのプログラム言語の知識とその応用

したがって項目ごとの知識や制作技術が必要とな

り, 広範囲な技術分野にわたるので, これを系統立 てることでメカトロニクスの仕組みが理解でき, さ らに制御理論を導入することで状態の最適化を図 り, 駆動エネルギーの最適化に関しても理解を得る ことができる。

制御系設計では以上のように個々の設計を経て制 御システムが成り立つものと考える。したがって本 稿では前記()~()のすべてには言及できな いので,項目()を主体としたメカトロニクスに おける制御理論・制御技術の関わりを記述すること にとどめたものとなっている。

3.制御目的と制御系構成

具体的な対象として不安定なメカニカルシステム を安定システムとする制御系の設計と制御実験を通 して,メカトロニクス+制御系の関係を検討するこ とにした。

図1で示すように,鉛直下にある振子を倒立状態 に移行し,かつ倒立状態を維持する振り上げ倒立制 御系の設計と実験を行う。具体的には図2に示すよ うに,振子の状態を2つの領域に分ける。1つは振 子を網点の領域に導く振り上げ軌道制御と,2つめ は振子が網点内に推移した時点での倒立安定制御と する。したがって,それぞれの最適とする制御則を 施し,領界点を時間的に連続した制御を行う制御系 を設計することである。後述するように,このこと により非線形制御系を線形近似した線形制御系範囲 で制御が可能となる。

図2 振子の制御軌道区分

4.振り上げ軌道制御

図1に示すシステムを擬似的に台車固定の振子の みの系とすると,振子が倒立状態にあるときの角度 を0(rad)としたとき,力学上からいえる安定

平衡点の角度は 〔rad〕の位置にあるといえる。 つまり振子の振り上げ制御は安定な平衡点にある

ものを不安定平衡点である倒立位置に移行し,その 時点で倒立安定化を施すというものである。

そこで,振子部を振子軸受けを中心とするリンク システムとして図3を考える。このシステムは非線 形であるが,ある点の平衡状態からの微少な変位

(t), (t)に対して, (t) (t), (t) u
(t)とおくと次式を得る。システム解析の結果,

 $\begin{pmatrix} (t) \\ (t) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ mg/\cos & -D/I \end{pmatrix} \begin{pmatrix} (t) \\ (t) \end{pmatrix} + \begin{pmatrix} 0 \\ 1/I \end{pmatrix} U(t) \dots (1)$

= 0のときは不安定な平衡点

= のときは安定な平衡点

で倒立状態が不安定であることがシステムの固有値 の解析からも示される。そこで大域的漸近安定化を 得るため, 0に収束させる制御入力Uを次式と する線形フィ-ドバック制御系を構成する。

U(t)= -f₁(t)-f₂(t)(2) 文献¹⁾が提案しているリアプノフ関数を利用する と(2)式のフィードバックゲインfは,

 $f_1 > mg/$, $f_2 > - D$

を得る。

このゲインf1,2は図4に示すように矢印の軌跡を 描く挙動となるように選ぶと良い。

この条件で図5の閉ループ系を構成することで大 域的漸近安定化と振子の をほとんど零の状態で

図3 1自由度リンクシステム

図4 振り上げ挙動を示す の軌跡

図5 振り上げ軌道制御の状態線図

を0〔red〕の近傍へ近づけることが可能となる。 以上のことが達成されると振り上げ軌道制御は不安 定平衡点の漸近安定化がなされる。

しかし,この制御則での不安定平衡点における振 リ子の状態は外乱に対しては何らの補償も与えられ てはいないので,この点における外乱に対しては倒 立の補償はない。これらの安定化補償としてオブザ ーバを併合したレギュレータを構成する。以上の理 由で,先に述べたように,それぞれ長所を生かした 制御系を連結構成のすることで制御目的を達成する ことが可能となる。

5.レギュレ-タとオブザ-バ

前項で述べた初期値問題や外乱等に対する安定化 補償の設計を示す。よく知られているように,図1 に示す倒立振子系の力学モデルの状態方程式と出力 方程式を次式で示す。

 $X(t) = AX(t) + Bu(t) \dots (3-1)$ $Y(t) = CX(t) \dots (3-2)$ $A = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & a_{32} & a_{33} & a_{34} \\ 0 & a_{42} & a_{43} & a_{44} \end{bmatrix}, B = \begin{bmatrix} 0 \\ 0 \\ b_3 \\ b_4 \end{bmatrix}, C = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$ $a_{32} = -(M_1 L)^2 g/a_0, \qquad a_{33} = -F(J + M_1 L^2)/a_0$

図6 オブザ - バを併合したフィ - ドバック系

 $a_{34}=cM_1L/a_0$, $a_{42}=(M+M_1)M_1gL/a_0$ $a_{43}=FM_1L/a_0$, $a_{44}=-(M+M_1)c/a_0$ $b_3=(J+M_1L^2)a/a_0$, $b_4=(M+M_1)J+MM_1L^2$ $a=M_1L^2/a_0$, $a_0=(M+M_1)J+MM_1L^2$

ただし,状態変数ベクトルX(t)は台車位置r, 振子角度,台車速度r,振子角速度とする。出 カYは,rとする。システム係数ベクトルA,入 カ係数ベクトルBの各係数は表1に示すデータで与 えられる。

表1のデータによると,解析の結果(3)式で示され る本システムの固有値 は次の値を得る。 = {5.648,0.0,-4.22,-5.87}で複素数平面右側に極を 持ち,明らかに不安定なシステムであることがわか る。(3)式の可制御なシステムに最適ゲインを制御入 力とする閉ループ系を構成する。

状態フィ - ドバックによるレギュレ - タの設計は (3-1)式の状態がすべて測定可能であることを前提 としている。しかし,本システムでは4変数のうち 2変数(r,))が測定不可能である。

この2変数の推定機構として2次の最小次元オブ ザーバを構成する。オブザーバの固有値が安定根を 持つよう希望固有値を設定し,ゴピナスの設計法に より各定数行列を得ることとする。

図6の目標値V=0とするレギュレータ問題とし てオブザーバを併合する状態フィードバック系とす る。レギュレータのフィードバックゲインは最小2 次評価関数を用いて設定する。

6.制御実験と結果

制御対象の設計に用いた装置パラメータの実測値

表1 制御対象パラメータ

記号	名称	測定値
М	台車系の等価質量	4.4kg
а	電圧トルク変換係数	20.09N/v
F	台車系の等価摩擦係数	19.2kg/s
J,I	振子の慣性モーメント	2.14 × 10 ⁻³ kgm ²
L,	台車対振子の重心距離	0.115m
c,D	軸の粘性摩擦係数	4.9 × 10 ⁻⁴ kgm ²
M₁m	振子の質量	0.1kg
g	重力加速度	9.8m/s ²

を表1示す。以上の議論で設計した制御則による実 験結果は,まず図6による振子の倒立安定制御に外 乱が加えられたときの制御結果を図7に示す。2.5° の外乱に対して10秒後には元の状態に戻っているこ とが確認された。この結果を踏まえて,振り上げ倒 立制御を行った結果が図8である。図の振り上げゲ インはf1=1.7,f2=0.42としたときの過渡特性である。 振子は倒立位置近傍に3秒ほどで到達し,この後は 外乱による変動とみなし,レギュレ-タによる制御 則に移り倒立安定状態を維持していることがわかる。

説明が前後したが,ゲイン設定値は外乱に対する オプザーバの固有値は以下の数値を与えた。

E = { - 19.0, - 10.9, - 4.34 ± 1.88i }

レギュレータの各状態変数に対するフィードバッ

図7 倒立安定状態に外乱に対する過渡応答

クゲインFの数値は,ほぼ最適設計値として以下の 数値を設定している。

F = { - 31.6, - 42.4, - 17.1, - 7.2 }

制御サンプリング時間は10[msec]間隔で行った。

7.まとめ

メカトロニクスと制御理論との関わりを考慮しな がら設計と実験結果を示した。主にシステム解析と 制御系設計について述べてきたが,制御対象として の機構の明確さ,センサの種類と精度,制御用マイ コンの性能などにより制御系設計のしやすさが決ま る。逆にメカニズム側から考えると機構・センサ・ 演算処理機能の性能などを考慮した制御設計・技術 が要求される。いずれにしてもメカトロニクスに制 御工学を付加することはメカニズムの精度・性能向 上を促し,より合理的なシステムが構築できる。し たがって,冒頭でも述べたように,メカトロニク ス+制御技術は物理・数学・機械・電子・情報の一 貫した目的の持てる教育訓練が展開できる教材であ ると確信した。

<参考文献>

- 1) 古田・川路・美多・原:メカニカルシステム制御,オム社(1990).
- 2) 1995年度実践教育研究発表会.
- MATLAB+Control-system toolbox The MATHWORKS. inc, Ver.4.00