科名	生産電子システム技術科	教科の▷	区分	専	攻実技
教科の科目	機械工作実習				
授 業 科 目	機械工作・組立実習 単 位			位	4
授業科目の目標	筐体設計に必要とされる機械図面の読み 品の加工、組立及び検査の方法を習得する		図面は	こ沿っ	た機械部
授業科目の細目	授業科目の内容				時間
1. 加工図面の読 み方	(1) 加工図面の読み方				2 H
2. 旋盤加工	(1)機械の取り扱い ① 旋盤による外形加工、段付き加工等	穿による部	品加二	Ľ.	24 H
3. フライス盤加 エ	(1)機械の取り扱い ① エンドミル加工、ボーリング加工等	穿による部	品加二	Ľ.	24 H
4. その他の加工	(1) ボール盤作業(2) 手仕上げ加工				12 H
5. 組立	(1) 伝達機構の組立① 組立と加工精度② 伝達機構の組立				8 H
6. 安全作業	(1)危険防止、メンテナンス				2 H
					合計72 H
使用する 機械器具等	旋盤、フライス盤、その他関連器工具				

科 名	生産電子システム技術科	教科の図	区分	専	攻実技
教科の科目	情報機器実習				
授 業 科 目	情報機器応用実習		単	位	4
授業科目の目標	コンピュータシステムを効果的に利用す グ手法を習得する。	⁻ るための	構造化	ヒプロ	グラミン
授業科目の細目	授業科目の内容				時間
1. 構造化プログラミング	(1)構造化プログラミング① 問題処理とプログラミング② プログラミング言語と処理手順				24 H
2. 応用プログラミング	(1)応用プログラミング① 手続きと副プログラム② プログラミング構造と構造化技法③ デバッキング技法				36 H
3. ファイル管理	(1) ファイル管理 ① ファイル入出力				12 H
					合計72 H
使用する 機械器具等	パーソナルコンピュータ、プログラミンク	が開発言語	i		

科 名	生産電子システム技術科	教科の▷	区分	専	攻実技
教科の科目	実装設計応用実習				
授 業 科 目	実装設計製作実習		単	位	4
授業科目の目標	プリント基板の製作技法、部品の実装方 法を習得する。	ī法、ケー	ブルイ	乍成及	び配線方
授業科目の細目	授業科目の内容				時間
 プリント基板 製作 	 (1)配線パターン作成 ① パターンフィルムの作成 ② パターンの露光・現像・エッチンク (2)仕上処理 ① ドリルによる穴あけ ② スルーホール作成 ③ 外形加工 	,×			32 H
2. 部品実装	(1) 部品実装① 部品の装着、ハンダ付け② 表面実装部品のハンダ付け③ 放熱フィンの取り付け				32 H
3. 配線	(1)配線① ケーブル作成② 電線の配線・束線・整形				8 H
					合計72 H
使用する機械器具等	テスタ、エッチング装置、メッキ槽、ボー	-ル盤 等			

科 名	生産電子システム技術科	教科の▷	区分	専	<u>-</u> 攻実	/ I 技
教科の科目	電子装置設計応用実習					
授 業 科 目	電子装置設計製作実習		単	位		4
授業科目の目標	電子装置の設計・製作・評価を行い、も順を理解し、製品化技術を習得する。	のづくり	に関す	トる基準	本的	な手
授業科目の細目	授業科目の内容				時	間
1. 設計	(1)設計手法① 設計コンセプト② 設計仕様に基づく電子回路設計③ 配線設計、筐体設計					8 H
2. 回路製作	 (1)電子回路設計製作 ①電源回路 ②表示回路 ③回路実装 ④総合調整、動作試験 					40 H
3. 筐体加工・組 立	(1) 筐体加工・組立① 筐体加工② 部品取付け、配線③ 総合調整、動作試験					16 H
4. 評価	(1)製品の評価① 設計仕様との比較と完成度② 問題点とその対策					8 H
					合計	-72 H
使用する 機械器具等	回路テスタ、直流安定化電源、オシロス: 装置 等	コープ、ホ	デー <i>ル</i>	盤、エ	ッチ	ーング

科 名	生産電子システム技術科	教科の▷	区分	専	工/工
教科の科目	電子装置設計応用実習		•		
授 業 科 目	電子回路設計製作実習		単	位	8
授業科目の目標	電子製品開発のキーポイントとなる回路 に関する製品化技術の手法及び評価法につ				電子装置
授業科目の細目	授業科目の内容				時間
1. 設計手法	(1)設計手法① 設計コンセプトの確立② 設計仕様に基づく設計③ 評価項目の設定				16 H
2. デジタル計測器設計	(1) デジタル計測器設計① A/D変換回路② 表示回路③ 入力レンジ設定回路④ 試作及び性能評価				48 H
3. デジタル計測 器製作	(1) デジタル計測器製作① プリント基板設計製作② 表示回路設計製作③ 筐体設計製作④ 総合調整、動作試験、試験表作成				48 H
4. 評価	(1)製品と試験表に基づく評価と対策 ① 精度、実装密度、保守性、ドキュメ ② 問題点とその対策	ント作成			32 H
					合計144H
使用する 機械器具等	電子CAD/CAM(シミュレータ含)、P 源、ロジックテスタ、電子電圧計、ファミ ロスコープ等				

科 名	生産電子システム技術科	教科の区	公分	専	攻実技
教科の科目	CAD/CAM応用実習	l			
授 業 科 目	CAD/CAM応用実習		単	位	4
授業科目の目標	電子回路設計支援システムの活用手法及いて習得する。	女 びプリン	ト基板	夏の作.	成法につ
授業科目の細目	授業科目の内容				時間
1. CADシステム	(1) CADシステム① 操作手順② 回路図作成③ パーツリスト作成と追加④ 回路チェックとネットリスト、ピン⑤ 電子回路シミュレータによる解析	/ペア表の;	活用		24 H
2. 配線設計	(1)配線(パターン)設計① 基板外形図② 部品配置、回路図の自動配置③ 熱解析と部品配置④ 手動配線と自動配線⑤ ベタパターンの活用				28 H
3. CAM	 (1) CAMによるプリント基板加工 ① 加工機用データフォーマット (ガート) ② CAM操作による加工法 ③ パターンチェック 	-バ・フォ [・]	ーマッ		20 H
					合計72 H
使用する 機械器具等	電子CAD/CAM(シミュレータ含む)				

					1/1
科名	生産電子システム技術科	教科の図	区分	専	攻実技
教科の科目	制御技術応用実習				
授 業 科 目	制御技術応用実習 単 位			位	4
授業科目の目標	プロセス調節装置とサーボ制御系を連携 得する。	隻したPID f	制御の	応用打	支術を習
授業科目の細目	授業科目の内容				時間
1. 汎用インバー タ制御実習	(1) 汎用インバータによる制御実習 ① 汎用インバータによるインダクショ	ンモータ	制御		12 H
 サーボモータ フィードバッ ク制御実習 	(1)制御装置によるサーボ制御実習① サーボモータのオープンループ制御② 電流帰還ループ制御③ 速度帰還ループ制御④ 位置帰還ループ制御	Ī			36 H
3. プロセス要素 とサーボ制御 系の実習	 (1)プロセス調節装置とサーボ制御系の ① プロセス要素フィードバックによる ② プロセス要素フィードバックによる 	SPI制御			24 H
	dell/fell ble IIII / >)	o — o			合計72 H
使用する 機械器具等	制御装置(シーケンス制御装置、プロク置、コンピュータ制御装置 等)、機械的圧力 等)調節装置				

		T	1		1/1
科名	生産電子システム技術科	教科の国	区分	専	攻実技
教科の科目	制御技術応用実習				
授 業 科 目	制御システム設計製作実習		単	位	8
授業科目の目標	FA制御システムの最適設計手法と実装、 制御システムの構築法及び運転法を習得す		配線	、試運 <u>.</u>	転等の
授業科目の細目	授業科目の内容				時間
1. 制御システム の設計	(1)制御対象の検討① システムの選定② 最適機器の選定③ 製作図面の作成④ 動作シーケンスの作成				36 H
 制御システム の製作 	(1)制御盤の製作① 実装及び据付け、配線② 配線確認及び修正③ プログラムローディング④ 試運転及びデバッグ				72 H
3. 評価	 (1)ドキュメント作成 ① 製作図面 ② プログラムリスト ③ 運転(操作)マニュアル ④ 保守マニュアル 				36 H 合計144H
使用する	フィードバック制御実験装置、シーケンス	ス制御実験	金装置		
機械器具等	制御実験装置、パーソナルコンピュータ		.,,,,,,	. ,	

		ī			1/1
科名	生産電子システム技術科	教科の区	分	専攻	実技
教科の科目	制御技術応用実習				
授 業 科 目	制御システムシミュレーション実習 単 位			江	4
授業科目の目標	数値計算と自動制御系のシミュレーショ 価技法を習得する。	ョンを行い,	制御系	系の解	析と評
授業科目の細目	授業科目の内容			B	寺 間
1. 数値計算	(1)数値計算の一般的手法① 微分方程式の解法② 積分方程式の解法③ 行列の解法				10 H
2. 伝達関数の過 渡応答特性と 定常応答特性	(1) 伝達関数の過渡応答特性と定常応答① インパルス応答シミュレーション② ステップ応答シミュレーション	特性と評価			8 H
 フィードバック制御系の定常応答特性 	(1) フィードバック制御系の定常応答特 ① 目標値追従応答シミュレーション ② 入力外乱応答シミュレーション	性と評価			8 H
4. 周波数応答特性	(1)周波数応答と評価① 周波数応答シミュレーション② 根軌跡応答シミュレーション				18 H
5. PID制御と周 波数特性	(1) PID制御と周波数特性と評価① P制御シミュレーション② PI制御シミュレーション③ PID制御シミュレーション				16 H
6. サーボ制御系 と制御応答演 習	(1) サーボ制御系と応答 ① モータ制御シミュレーション				12 H
				슫	計72 H
使用する 機械器具等	パーソナルコンピュータ、制御系シミ 等	ュレータ、	教材戶	用制御	対象物

科 名	生産電子システム技術科	教科の図	区分	専	攻実技
教科の科目	制御技術応用実習				
授 業 科 目	電力変換設計製作実習		単	位	4
授業科目の目標	電力変換手法について、電力素子の使いの設計製作法等を習得する。	方、イン	バータ	、コ	ンバータ
授業科目の細目	授業科目の内容				時間
1. 電力素子	(1)電力素子の駆動① SCR② バイポーラトランジスタ③ パワーMOSFET④ IGBT				10 H
2. コンバータ	(1) コンバータ設計製作① コンバータ仕様とその設計② 製作と調整③ 動作試験と試験表の作成				26 H
3. インバータ	(1) インバータ設計製作① インバータ仕様とその設計② 製作と調整③ 動作試験と試験表の作成				30 H
4. 評価	(1)製品と試験表に基づく評価と対策① 効率、保守性、ドキュメント② 問題点とその対策				6 H 合計72 H
使用する	 負荷試験器、電圧計、電流計、オシロス:	コープ、直	直流安気	_ 定化電	
機械器具等	安定化電源 等		/		

		T			1/1
科名	生産電子システム技術科	教科の▷	区分	専	攻実技
教科の科目	通信技術応用実習				
授 業 科 目	通信技術応用実習 単 位				4
授業科目の目標	送受信機の原理と仕様を学び、それを構 計を通して、通信回路応用技術を習得する		種機能	ピブロ	ックの設
授業科目の細目	授業科目の内容				時間
1. 送受信機の構 成	(1)送信機の構成 (2)受信機の構成				2 H
2. 受動回路設計	(1)結合線路の設計 (2)バイアス回路の設計				10 H
3. 增幅器設計	(1)電力利得(2)ダイナミックレンジ(3)雑音特性(4)増幅器の設計				12 H
4. ミキサ設計	(1)周波数変換の原理 (2)受動、能動ミキサの設計				12 H
5. フィルタ設計	(1) ローパスフィルタの設計 (2) バンドパスフィルタの設計				12 H
6. 検波回路設計	(1)検波回路の原理 (2)検波回路の設計				12 H
7. 発振回路設計	(1)発振回路の原理(2)発振回路の設計(3) VCO(4) PLL				12 H
					合計72 H
使用する 機械器具等	制御系及び電子回路シミュレータ、オシレイザ、市販ボード等	ロスコーフ	゚、ス	ペクト	

科 名	生産電子システム技術科	教科の▷	区分	専	攻実技
教科の科目	通信技術応用実習				
授 業 科 目	イントラネット構築実習		単	位	4
授業科目の目標	小規模なネットワークについての構築法 LAN管理等のコンピュータネットワーク技				順、
授業科目の細目	授業科目の内容				時間
1. ネットワーク 構成	(1) コンピュータネットワークの基礎① 仕組みと構成② OSI7階層とその制御並びに各データ	7構成			4 H
2. 中継装置	(1)各種ネットワーク中継装置① ネットワークカード② HUB③ ルータ				4 H
3. TCP/IP	(1) TCP/IPの構造 ① TCP/IPの動作確認				8 H
4. Peer To Peer	(1) Peer To Peer ① 共有の設定 ② Ping、Arpの設定				8 H
5. イントラネット	 (1) イントラネット構築 ① サーバ/クライアント ② ドメイン ③ ユーザ登録 ④ アクセス権設定 ⑤ プリンタ設定 				48 H
					合計72 H
使用する 機械器具等	パーソナルコンピュータ、HUB、ルータ、 ソフト、LANアナライザ 等	、サーバン	ソフト	、クラ	ライアント

科 名	生産電子システム技術科	教科の▷	区分	専	攻実技
教科の科目	計算機応用実習				
授 業 科 目	コンピュータ応用実習		単	位	4
授業科目の目標	組み込みシステムとしてのCPUボードのるとともに組み込みを意識した効率的なっる。				
授業科目の細目	授業科目の内容				時間
1. CPUボード	(1) CPUボード① CPU概要② リセット等周辺回路③ メモリ回路④ バスインタフェース⑤ 実装技術				8 H
2. インタフェー スボードの製 作	(1) CPUボードとのインタフェースボー① インタフェースボードの設計② ボード製作・動作確認	ド設計・	製作		16 H
3. プログラム開 発	(1)開発環境の構築① Cコンパイラ、リンケージエディタ② スタートアップルーチン③ ROM化手法				12 H
	 (2) C言語による組み込みプログラム ① 効率的なプログラミング ② デバッグ手法 ③ インタフェースボードを利用した組み実習]み込みプ	ログ	7	36 H
					合計72 H
使用する 機械器具等	マイクロコンピュータ開発支援装置、パパイラ 等	ーソナルコ	コンビ	゚ューク	ダ、Cコン

科 名	生産電子システム技術科	教科の区	区分	専	攻実技
教科の科目	計算機応用実習		,		
授 業 科 目	コンピュータ制御プログラミング実習		単	位	4
授業科目の目標	組み込み型マイコン制御システムの構築 グ技術について習得する。	ミに必要と	される	らプロ	グラミン
授業科目の細目	授業科目の内容				時間
1. 開発環境の構 築	(1) 開発環境の構築 ① 組み込み型マイコンと制御用プロク ② コンパイラのインストールと環境診 ③ デバッガのセットアップ				4 H
2. タイマ機能と 割込処理	(1) タイマ機能と割込処理① C言語によるハードウェアタイマの② 割込の種類と活用③ C言語による割込処理プログラミン				20 H
3. 周辺機能プログラミング	(1) 周辺機能プログラミング① A/D・D/A変換器の利用② 各種通信機能の利用				20 H
4. モータ制御プログラミング	(1) モータ制御プログラミング① 位置決め制御プログラミング② 速度制御プログラミング				28 H
 使用する	ワンボードマイコン、パーソナルコンピ	ュータ (コン	パイラ	合計72 H ウ エディ
機械器具等	タ等		, - v /		, = 7 1

		T			1/1
科名	生産電子システム技術科	教科の▷	区分	専	攻実技
教科の科目	計算機応用実習				
授 業 科 目	コンピュータシステム設計製作実習		単	位	8
授業科目の目標	コンピュータを用いたモータ制御シスラ グ技術及び評価法を習得する。	⁻ ムの設計	製作、	プロ	グラミン
授業科目の細目	授業科目の内容				時間
1. 設計手法	(1)設計手法① 設計コンセプトの確立② 設計仕様に基づく設計③ 評価項目の設定				16 H
2. モータ制御シ ステム	(1) インタフェース回路① A/D・D/A変換回路② アイソレーション回路③ モニタ用表示回路				24 H
	(2) モータ駆動回路① 電力変換回路(3) 制御プログラミング① 速度制御プログラミング② 位置決め制御プログラミング				40 H 40 H
3. 評価	(1)設計仕様に基づく評価 ① 外観の仕上がり、性能評価 ② 速度制御における精度、応答性 ③ 位置決め制御における精度、位置決 ④ 問題点とその対策	やめ時間			24 H
					合計144H
使用する 機械器具等	制御機器実験装置、ワンボードマイコン、 種測定機器 等	パーソナ	ールコミ	ソピュ	ータ、各

科名	生産電子システム技術科	教科の区	分	専攻	
教科の科目	電子制御装置設計・製作実習				
授業科目	電子回路装置設計製作課題実習		単位	立	10
授業科目の目標	電圧調整回路、電流調整回路等を組み入 通して、自動制御系の構築技術及び電子回 に実践的な製品化技術を習得する。				
授業科目の細目	授業科目の内容			F	時 間
1. 製作計画と回 路設計	(1)電源装置の製作計画① 仕様と回路構成② 回路設計と部品選択③ 筐体概要設計④ 製作手順と役割分担⑤ 評価項目の設定				36 H
2. 電源装置製作	 (1)基板設計製作 ① 回路図作成作業 ② 基板設計作業 ③ 基板加工作業 (2)筐体設計製作 ① 熱設計作業 ② 機構設計作業 ③ 筐体詳細設計作業 ④ 筐体加工・製作 (3)総合組立 ① 部品実装作業 ② 組立配線作業 				88 H
3. 性能試験	(1)性能試験と検査表の作成① 動作確認と各部調整② 動作試験と信頼性試験③ 検査表作成				24 H

		<i>L / L</i>
授業科目の細目	授業科目の内容	時間
4. 評価と報告	 (1)製品と試験表に基づく評価と対策 ①安全性、保守性、信頼性 ②問題点とその対策 ③完成図書の作成 (2)成果報告 ①発表準備 ②報告書作成 	32 H
は田よっ	女共和帝の こっち よいこっこ プロボオカウル声 を	合計180H
使用する機械器具等	負荷試験器、テスタ、オシロスコープ、直流安定化電源、 ク、手動プレス、卓上ボール盤、エッチング装置一式、CAD	

科名	生産電子システム技術科	教科の区グ	分	専	
教科の科目					
			ж	<i>i</i> .	10
授業科目	電気装置設計製作課題実習 電気装置としてPLDと電力用素子を用い	った PWM イ	単 		10
授業科目の目標	リーエレクトロニクス制御装置の設計・ ステム構築技術及び電気装置に関する標準な製品化技術を習得する。	以作を通して	て、電	力制征	卸系シ
授業科目の細目	授業科目の内容				時間
1. 製作計画と回 路設計	(1)電気制御装置の製作計画① 仕様と回路構成② 回路設計と部品選択③ 筐体概要設計④ 製作手順と役割分担⑤ 評価項目の設定				20 H
2. コンバータ部 の設計製作	(1)電源入力回路設計製作① 回路設計作業② 絶縁技術③ 配線材料、ワイヤリングハーネス作④ CAD設計作業	丰業			24 H
3. インバータ部の設計製作	 (1) 主回路の設計製作 ① IGBT素子回路設計作業 ② 絶縁技術 ③ 配線材料、ワイヤリングハーネス件 ④ CAD設計作業 (2) 主回路筐体設計製作 ① 筐体の選択 ② 筐体加工作業 ③ 筐体詳細設計作業 (3) 総合組立 ① 部品実装作業 ② 組立配線作業 	業			32 H

		2/2
授業科目の細目	授業科目の内容	時間
4. インバータ制 御回路の設計 製作	 (1)制御システム部の設計製作 ① FPGAによる二相 - 三相信号発生回路設計 ② 制御システム駆動電源回路設計 ③ 疑似正弦波発生回路設計 ④ キャリア発生回路設計 ⑤ FPGAによる短絡防止回路設計 ⑥ PWM信号発生回路設計 ⑦ IGBTゲート駆動回路設計 ⑧ CAD設計作業 (2)プリント基板の製作 ① CAD/CAMシステムによるPCB設計 ② PCB製作 ③ 試作PCB基板評価試験 (3)筐体設計製作 ① 筐体の選定 ② 筐体の加工・組立作業 (4)総合組立 ① 部品実装作業 ② 配線作業 	48 H
5. 性能試験	(1)性能試験と検査表の作成① 動作確認と各部調整② 動作試験と信頼性試験③ 検査表作成	24 H
6. 評価と報告	 (1)製品と試験表に基づく評価と対策 ① 安全性、保守性、信頼性 ② 問題点とその対策 ③ 完成図書の作成 (2)成果報告 ① 発表準備 ② 報告書作成 	32 H 合計180H
使用する	コンピュータシステム、CAD/CAMシステム、PLD開発ツ	
機械器具等	加工機、デジタルオシロスコープ、ロジックアナライザ 等	

科 名	生産電子システム技術科	教科の区分	専	攻実技
教科の科目	電子制御装置設計・製作実習		1	
授 業 科 目	コンピュータ制御装置設計製作課題実習	単	位	10
授業科目の目標	DSPを用いてPWMによる速度制御機能作を通して、コンピュータ、DSPの両面のび電子装置に関する設計技術並びに実践的)制御系システ	ム構築	技術及
授業科目の細目	授業科目の内容			時間
1. 製作計画と回 路設計	(1) コンピュータ・DSPによる制御装置① 仕様と回路構成② 回路設計と部品選択③ 筐体概要設計④ 製作手順と役割分担⑤ 評価項目の設定	の製作計画		12 H
2. 基本設計	 (1)搬送車の基本設計 ①機構設計 ②コンピュータ回路設計 ③DSP回路設計 ④センサ回路設計 ⑤筐体設計 ⑥熱設計 			24 H
3. ソフトウェア 設計と実験	 (1) DSPの設計 ① DSPによる周波数発生回路実験及び ② DSPによるPWM制御回路実験及び ③ DCモータ制御及び評価 (2) センサ回路とDSPによるモータ制御 (3) コンピュータ部のソフトウェア設計 ① モニタプログラム ② 制御プログラム (4) プログラムのROM化 	** * * * *		48 H
4. 回路設計製作	(1) プリント基板の設計製作① CAD/CAMによるプリント基板設② プリント基板製作③ プリント基板の評価試験④ 部品実装	 		16 H

		2/2
授業科目の細目	授業科目の内容	時間
5. 筐体設計製作	(1) 筐体設計製作 ① 筐体選定 ② 筐体設計 ③ 筐体加工	12 H
6. 総合組立・試 験調整	(1)総合組立調整① 組立・配線② 調整・試験	8 H
7. 性能試験	(1)性能試験と検査表作成① 動作確認と各部調整② 動作・信頼性試験③ 検査表作成	24 H
8. 評価と報告	 (1)製品と試験表に基づく評価と対策 ①安全性、保守性、信頼性 ②問題点と対策 ③完成マニュアル作成 (2)成果報告 ①発表準備 ②報告書作成 	36 H
は田よっ	コンル。カシフテナ CAD /CAM - フィン町や土板い	
使用する機械器具等	コンピュータシステム、CAD/CAM、マイコン開発支援ツックアナライザ、機械加工機、オシロスコープ、各種測定器	

		T		1/2
科名	生産電子システム技術科	教科の区分	専	攻実技
教科の科目	電子制御装置設計・製作実習			
授 業 科 目	マイコン制御装置設計製作課題実習	È	单 位	10
授業科目の目標	CPU、熱電対センサ、C言語で記述したた温度計測データロガー装置の設計・製作ステム構築技術及び設計技術並びに実践的	Fを通して、 ¬	マイコン	制御のシ
授業科目の細目	授業科目の内容			時間
1. 基本設計	 (1)製作計画 ① 仕様と回路構成、ソフトウェア ② 概要設計 ③ 製作手順と役割分担 (2)ハードウェア設計 ① 熱電対回路 ② 信号変換回路 ③ DC/DC変換回路 ④ 表示回路 ⑤ 性表計 ⑥ 熱設計 (3)ソフトウェア設計 ① ボネラルプログラム設計 ② 開発ツール整備・操作 ③ CPUボード動作確認 ④ プログラミング演習 			24 H
2. 回路試作と実験	 (1)試作と実験 ① DC/DCコンバータ周辺回路 ② センサ周辺回路 ③ 表示回路周辺回路 ④ A/D変換のプログラミング ⑤ データ表示のプログラミング ⑥ CAD設計 			24 H

		2/2
授業科目の細目	授業科目の内容	時間
3. ソフトウェア 設計制作テス ト	 (1)制御プログラムモジュールの制作 ① CPU初期化プログラムモジュール ② ヘッダファイルプログラムモジュール ③ データ取り込み関数プログラムモジュール ④ ログファイル取得プログラムモジュール ⑤ 通信プログラムモジュール ⑥ データ表示プログラムモジュール (2)各プログラムのテスト 	36 H
4. 回路設計製作	(1) プリント基板の設計製作① CAD/CAMによるPCB設計② プリント基板製作③ PCBの評価試験④ 部品実装	24 H
5. 筐体設計製作	(1) 筐体設計製作 ① 筐体選定 ② 筐体設計 ③ 筐体加工	12 H
6. 総合組立・試 験調整	(1)総合組立調整 ① 総合組立調整	8 H
7. 性能試験	(1)性能試験と検査表の作成① 動作確認と各部調整② 動作試験と信頼性試験③ 検査表作成	20 H
8. 評価と報告	 (1)製品と試験表に基づく評価と対策 ① 安全性、保守性、信頼性 ② 問題点とその対策 ③ 完成図書の作成 (2)成果報告 ① 発表準備 ② 報告書作成 	32 H
		合計180H
使用する 機械器具等	コンピュータシステム、CAD/CAMシステム、マイコン開 ル、デジタルオシロスコープ、ロジックアナライザ、各種計	